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Abstract: In this paper, a Genetic Algorithm (GA) is employed to search for the 
optimal supply restoration strategy in distribution networks. An ‘integer permutation’ 
encoding scheme is adopted in which each chromosome is a list of indices of 
switches. The status of each of these switches is decided according to graph theory 
subject to the radiality constraint of distribution networks. Each chromosome then 
maps to a feasible network topology. A special gene ‘0’ is also introduced into the 
chromosome. Instead of representing a switch, this is a flag that keeps some parts of 
the network disconnected enabling the GA to find the optimal load shedding strategy 
where necessary. The proposed algorithm has been tested on a practical system and 
shown to find an optimal post-fault supply restoration strategy, but also the optimal 
load shedding point when total demand cannot be supplied. 
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1. Introduction 
 
Supply restoration aims to restore as many loads as possible from the out-of-service 
areas via network reconfiguration at minimal operational costs and at the same time to 
minimise the network loss. It is a multi-objective, combinatorial, nonlinear 
constrained optimisation problem. 
 
Since an effective post-fault supply restoration strategy for distribution networks 
plays a key part in improving service reliability and enhancing customer satisfaction, 
there has been considerable research effort focused on this problem. The main 
challenge has been in reducing the search space so as to achieve an optimal solution 
within an acceptable computing time. 
 
Approaches proposed for this problem can be roughly divided into three categories: 
  
1). Domain specific knowledge based methods [1, 2, 4, 5]. These expert-system based 
methods attempt to capture the knowledge and heuristic rules used by power system 
operators to determine switching sequences for supply restoration under a range of 
fault conditions. This information is typically stored in a knowledge base in the form 
of rules. The knowledge base is normally interpreted by an expert system shell in a 
way that seeks to mimic the decision-making process of human operators. However, 
the heuristic knowledge base is difficult and costly to gather and interpret. Since the 
resulting knowledge base is likely to be specific to a given system and its normal 
running configuration, a specific knowledge base would have to be built for each 
network to which the method was applied. In addition, there is no guarantee that, in a 
given case, the solution found will be close to the optimal solution under the 
prevailing conditions. 
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2). Optimisation methods [3]. These methods formulate the supply restoration 
problem as an optimisation problem suitable for solution by one of the standard 
mathematical programming techniques, e.g. linear programming. Such methods can 
be applied to any network configuration, and can find the optimal solution provided 
the problem is adequately formulated. However, they have been proved to be 
computationally very costly for large systems.  
 
3). Heuristic search methods [7, 8, 9]. These compare a number of candidate 
restoration solutions with specified performance criteria. Heuristic rules are employed 
during the search for solutions to reduce the search space; as a result, solutions can be 
reached within an acceptable time period. The approach is efficient and does not rely 
on specific knowledge about a system. However, the number of possible solutions 
will be prohibitively large unless effective heuristic rules can be developed. In 
addition, when load is transferred from feeder to feeder in multi-part switching, there 
is no guarantee of a strictly optimal solution. 
 
A GA is a method for search and optimisation that imitates the processes of natural 
selection and evolution [15]. Due to their ability to find global optimal solutions for 
solving large-scale combinatorial optimisation problems, GAs have been found to be 
efficient methods for power system problems, including the supply restoration 
problem. A GA application to network reconfiguration for distribution system loss 
minimisation was first reported in reference [12]. By incorporating heuristic 
techniques, a parallel genetic algorithm for service restoration was also proposed in 
reference [13].  However, the string encoding method used makes the approach 
difficult to apply in practice. 
 
A systematic supply restoration algorithm based on a genetic algorithm is proposed in 
this paper. Instead of the standard ‘binary’ encoding method, an ‘integer permutation’ 
encoding scheme is adopted in which each gene in the chromosome is an integer 
representing one controllable switch. Graph theory is employed to decide the final 
status of each switch according to the radiality constraint of distribution networks. 
The GA objective function includes all the objectives and constraints required for a 
practical supply restoration scheme. A special gene ‘0’ is incorporated in the 
chromosome, indicating the optimal load shedding point for the system, for cases 
where a network cannot supply all the demands. Software implementing the proposed 
algorithm has been developed, and has been tested on a practical system.  
 
2. Problem Formulation 
 
Network reconfiguration after a line removal for supply restoration aims to transfer 
de-energised loads in the out-of-service areas to other supporting distribution feeders 
without violating operating or engineering constraints. When the system is not able to 
supply all of its loads, load with low priority should be shed. The solution to this 
multi-objective constrained optimisation problem should meet the following 
requirements: 
• As much load as possible should be supplied in the resulted network within an 

allowable time frame; optimal load shedding (in term of load priority and 
magnitude) should take place when the demand is greater than supply capability; 
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• The switch operation costs occurring during reconfiguration should be minimised. 
This would take into account factors of switch operation time and cost, such as 
whether the switch is manually operated or remote controllable, and (for manually 
operated switches) the time needed to access the switch. 

• The energy loss in the resulting network should be minimised. 
 
To achieve these objectives, the following constraints should be observed in the 
resulting network: 
• The radial structure of the distribution network should be retained; 
• No violation of busbar voltage limits; 
• No current overloading in any line.  
 
3. Genetic Algorithms  
 
Inspired by the theory of evolution, genetic algorithms are adaptive search techniques 
that derive their models from the genetic processes of biological organisms. A GA 
starts with a number of solutions to a problem, encoded as strings of symbols. The 
string that encodes each solution is a ‘chromosome’ and the set of solutions is called 
‘population’. The position of a symbol in the string is called ‘allele’. The symbol or 
value that an allele can contain is called ‘gene’. The initial population can be 
generated randomly, or may consist of a number of known solutions, or a combination 
of both. The GA goes through a number of steps in which the population at the 
beginning of each step is replaced with another population, which it is hoped will 
include better solutions to the problem. A process called reproduction, in which the 
chromosomes of the old population are combined to create new ones, is applied to 
define each new generation. Reproduction works by repeatedly applying three 
operations to the current generation: selection, crossover and mutation, until the 
required number of chromosomes are available in the new population.  
 
A GA requires an evaluation function that assigns a ‘fitness’ value to each potential 
solution (chromosome). A GA works with only the symbol strings and has no inherent 
knowledge about the problem. Problem specific information is provided by the 
objective or evaluation function. It is the evaluation function that guides the GA to 
evolve towards better solutions. The fitter the chromosome, the higher the probability 
that it will be retained and selected to generate a new candidate solution.  
 
The GA evolution process is a powerful global search mechanism, whose 
computational code is very simple. 
 
4. Genetic Algorithm for Supply Restoration and Optimal Load Shedding 
 
A GA is suitable for the supply restoration algorithm because it is very easy to change 
constraints or objectives, or apply new ones.  
 
4.1 String Encoding 
 
4.1.1. Integer Permutation Encoding Scheme 
 
Before a GA can be applied to an optimisation problem, an encoding scheme that 
maps all possible solutions of the problem into symbol strings (chromosomes) must 
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be introduced. It is also helpful if the encoding maps as many chromosomes as 
possible to feasible solutions. The ideal encoding would give only feasible solutions, 
so that the GA would not need to test for feasibility. 
 
Since the topology of a distribution network can be uniquely defined by the status of 
all available switches, a solution to the supply restoration problem can be encoded as 
a function of the controllable switch states of the network. The most natural coding 
method is to have a binary string with length equal to the number of switches in the 
network. Each switch state is represented by one bit with a value ‘1’ or ‘0’ 
corresponding to ‘closed’ or ‘open’. However, this encoding is a poor choice because 
it does not ensure that the chromosome will generate a feasible solution. 
 
Instead, an ‘integer permutation’ encoding scheme is proposed here. A similar 
approach has been widely applied to the well-known ‘travelling salesman problem’. 
The problem is to find the minimum cost path through a graph or network visiting all 
the nodes exactly once. If every node is assigned a unique integer, then the ordering 
of the integers in the chromosome defines the order in which the nodes are visited.  
 
In an integer permutation encoding, the genes are the integers from one up to the 
number of positions, and the solution that the chromosome represents depends on the 
relative ordering of the integers. 
 
For the supply restoration problem, each integer in the permutation will be an index 
into a list of switches that can be used for restoring the supply. The integers therefore 
take values from one to the number of switches which need to be investigated, i.e. if 
there are k switches in the study, each chromosome will be composed of k unique 
integers with values from 1 to k.  
 
The sequence of these integers represents an ordered operation sequence of switches 
to be followed to generate a valid network topology. For instance, for a system with 6 
switches (initially all open) considered for supply restoration, the string of length six: 
 (3 2 6 5 1 4) 
defines an ordered switch sequence: Switch 3, Switch 2, Switch 6, Switch 5, Switch 1 
and finally Switch 4.  
 
4.1.2 String Interpretation for Supply Restoration Problem 
 
The string shown above is only a permutation of switches, in order for the string to be 
meaningful and map a valid network topology, these switches must be assigned status 
values either as ‘closed’ or ‘open’.  Here, a scheme based on graph theory is proposed 
which decides the status of these switches by ensuring the radiality constraint of the 
distribution network is met. 
 
Before the GA begins, the actual distribution network is mapped to a graph. The 
branches of the graph correspond to switches that can be operated for supply 
restoration, while the nodes of the graph represent all the connected elements of the 
network that do not include any of these switches. Each node therefore will represent 
an island of the network that does not need to be further subdivided during supply 
restoration analysis. 
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Initially all switches are assumed to be open, and starting with the first gene (integer) 
in the chromosome, its corresponding switch is closed. The process is repeated for 
each gene until the end of the chromosome is reached. If closing a switch would 
violate the radiality constraint for the distribution network by creating loops or 
connecting sources together, then that switch operation is abandoned and the next 
gene in the chromosome is considered. 
 
To test for loop or source connection violations, each node of the graph is initially 
assigned a unique ‘colour’ value (represented as a positive integer), excepting those 
nodes that contain generators or infeeds (considered as source nodes) which are 
assigned a particular ‘colour’ value of ‘0’. All the branches are removed to represent a 
network in which all switches are open. Each branch is visited in the order determined 
by the chromosome. If a visited branch connects two nodes of different colours, then 
it is inserted into the graph and all nodes having the higher colour of the two will be 
changed to have the lower colour. 
 
Loops are avoided by preventing two nodes of the same colour being connected, and 
assigning the same colour value ‘0’ to all source nodes ensures that two sources will 
never be connected together. At the end of this procedure the switches in the network 
that have their corresponding branches inserted in the graph will be closed and the 
other switches will remain open, thus generating the complete set of switch states 
corresponding to this chromosome. 
 
If there are k switches in the network under study, then the chromosome takes the 
form:     

(I1  I2  I3  …  Ik),                                                (1) 
where 1≤ Ii ≤ K and Ii ≠ Ij  for i≠j  (I denotes Integer). Suppose there are N nodes in 
the graph of which Ns are source nodes. The problem is to connect each of the (N-Ns) 
non-source nodes (with uniquely assigned colour value from ‘1’ to ‘N-Ns’) to any of 
the Ns source nodes (each having colour value ‘0’) according to the sequence order 
defined by the chromosome.  
 
The switch operation status decided by the above mentioned branch insertion scheme 
guarantees that each chromosome will be mapped to a valid network configuration 
which is normally a radial network consisting of Ns spanning trees rooted at the Ns 
source nodes of the network. 
 
If a prefix symbol ‘+’ denotes the switch state is ‘open’, while ‘-’ denotes the switch 
state to be ‘closed’, the initial string can be denoted by: 

(+I1  +I2  +I3  …  +Ik),                                                             (2) 
Where all switches are in ‘open’ states. The permutation finally obtained will be of 
the form: 

(-I1  (+-)I2  (+-)I3  …  (+-)Ik),                                                  (3) 
Where (+-) denotes either the ‘open’ or ‘closed’ state according to the graph 
constraints.  
 
It can be seen that the original string expressed in (1) can uniquely lead to a unique 
sequence of switch states expressed as in (3) which defines a radial network 
configuration for supply restoration. 
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An AC loadflow is calculated for each trial network configuration to allow the fitness 
of the corresponding chromosome to be evaluated.  This requires a measured value (or 
an estimated value) for each load in the distribution network. In practice, individual 
loads in a distribution network may be unmeasured. In this case an appropriate load 
estimation process should be applied [14].    
 
4.1.3 ‘0’ Gene for Optimal Load Shedding  
 
According to the proposed algorithm, the switch operations are determined by the 
integer permutation contained in the GA chromosome. The switch setting algorithm 
proposed guarantees that a valid network configuration is generated, which is a 
spanning tree or spanning forest with each load connected to a source (if any possible 
connection exists). The number of spanning trees should be equal to the number of 
supply sources available in the network. If in any spanning tree, the source cannot 
supply all of its loads (e.g. the AC load flow is divergent), these loads will remain 
unsupplied and be treated as lost load. 
 
In practice, however it is expected that as much of the demand as possible will be 
supplied. Where demand exceeds supply, some loads with lower priority should be 
discarded and each source would supply the remaining loads to its maximum 
capability.  
 
Based on this consideration, a special gene ‘0’ is introduced into the chromosome. 
The string length now becomes ‘k+1’ if there are k switches in the study. The ‘0’ gene 
is different from the other (strictly positive) genes, in that instead of denoting one 
switch it is simply a flag. In the process of switch status setting all remaining switches 
are kept ‘open’ beyond the ‘0’ gene in the chromosome, so as to keep some parts of 
the system unconnected (or some loads unsupplied). In the initial population, the ‘0’ 
gene’s position is randomly generated, but it is expected that the ‘0’ gene will evolve 
to somewhere near the end of the chromosome, after a few generations.  This is 
because such chromosomes are likely to be fitter than those in which the ‘0’ gene 
occurs at an earlier position. Eventually, the GA should converge to the optimal 
network configuration for supply restoration. Where the network has the capability to 
supply all of the loads, the optimal chromosome should have the ‘0’ gene in the last 
position, or a position near the end of the chromosome so that the switches denoted by 
the subsequent genes do not require to be closed. However, when the network cannot 
supply all of the loads, the ‘0’ gene will occur at an earlier position preventing one or 
more selected loads from being supplied. The switches through which these loads 
would have been supplied would have their genes located after the ‘0’ gene in the 
chromosome. Since GA is a global search technique, the loads to be shed identified by 
the genes occurring after the ‘0’ gene, in the final chromosome, should indicate the 
global optimum solution in terms of the defined objective function.  
 
For instance, chromosome (3 2 6 5 0 1 4) will only allow the status of switches 
represented by (3 2 6 5) to be evaluated by graph theory, ‘0’ is a stop sign and 
switches 1 and 4 are kept open. Loads connected to sources by switches 1 and 4 will 
be shed according to this chromosome. Since the position of the ‘0’ gene in the initial 
population is randomly generated, the introduction of the ‘0’ gene allows the GA 
effectively to search for an optimum solution from a series of strings: (0), (3), (3 2), (3 
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2 6), (3 2 6 5), (3 2 6 5 1), (3 2 6 5 1 4). The optimal position for ‘0’ gene will be 
determined via the evolutionary process.  
 
4.2 GA Operations 
 
The Order Crossover (OX) operator is adopted, which builds offspring by choosing 
a sub-sequence from one parent and preserving the relative sequence order from the 
other parent [16].  
 
Mutation is achieved through exchanging two integer positions in a chromosome. 
 
Since a GA chromosome will uniquely generate a valid feasible network 
configuration for supply restoration, its fitness can be evaluated using a standard AC 
load flow on the candidate network to provide the quantities required in the objective 
function. 
 
4.3 GA Objective Function  
 
Most optimisation problems impose constraints on the acceptable solutions, so it is 
possible that the solution that a chromosome describes would not be feasible. The 
option of simply rejecting every infeasible solution may lead to the rejection of some 
good partial solutions, and is likely to be computationally inefficient. 
 
An objective function can be modified to account for these constraints by penalising 
any solution that violates a constraint.  In this approach a penalty term, which depends 
on the constraint and the extent of its violation, is subtracted from the calculated 
fitness value. This ‘penalty function method’ permits new constraint formulations to 
be added readily to a GA based optimisation method. 
 
The GA objective function for the supply restoration problem consists of five terms: 
• The demand that cannot be supplied because the corresponding parts of the 

network are not connected to a source, or the load that has been shed to avoid 
constraint violations; 

• The network power losses; 
• Branch current overloads; 
• Busbar voltage deviations; 
• Switch operation costs. 
 
Each factor contributes a penalty term and the objective function for the chromosome 
is the weighted sum of all these penalties. Since the smaller the value of the objective 
function the greater its fitness, searching for maximum fitness corresponds to 
minimising the total penalty. 
 
The objective function is defined as: 

∑
=

++++=
swn

i
iSWDVDOIOLLLLLL CWVWIWPWPWf

1
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Where: 
LLP   is the ratio of total weighted lost load to total weighted demand     

( ∑∑
j

LL
i

LLL jiii
PWPW / ) 

LLW  is the weight for LLP  

LP   is the ratio of total losses to total power supplied ( ∑ iGLoss PP / ) 

LW  is the weight for LP  

OI  is the sum of the ratios of current overload to maximum permitted current 

for each line (∑
=

+ −l

i

i

i

i

I
II
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IOW  is the weight for OI  

DV  is the sum of the ratios of voltage deviations from limits for each node 

(∑
= ∆

∆N

i

i

i
V

V
1 max

|| ) 

VDW  is the weight for DV  

SWn  is the number of switches that can be used for restoring supply 

iC   is the cost of operating switch i from the existing state to the state required 
by the evaluated configuration 

SWW  is the weight for the switch operation cost term 
 

The first term in the objective function is defined as lost load: LLW * LLP  where LLP  = 

∑∑
j

LL
i

LLL jiii
PWPW / . The priority of each load is reflected by the weighting factor 

iLW . The lost load term is meaningful when some load cannot be connected to any 
source, or load has to be shed in order for the system to meet other constraints. Heavy 
penalties are applied for lost load, but where necessary, the GA can decide the optimal 
load shedding points to reach the best solution for the supply restoration problem.  
 
The second term accounts for the network losses. It has the minimum weight since 
compared to other items it is the least crucial in the supply restoration scheme. 
 
The third and fourth term incorporate the traditional steady state security constraints 
into the objective function. Since breaking these constraints may bring about serious 
damage to the system, heavy penalties are applied to these two items.  
 
The fifth term accounts for the cost of switch operations required during network 
reconfiguration. The parameter iC denotes the cost of changing switch i from the 
existing state to the state required by the desired configuration, taking into account 
factors such as whether the switch is remote controlled or manual operated, the access 
time for the switch, etc. 
 
In the current objective function, most terms are defined as ratios. It is expected that 
users will adjust the weighting coefficients to reflect the relative importance of the 
various objective terms and according to experience with the solutions obtained.  
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Typical weight values, used in the experiments reported here, are 10.0 for lost load, 
10.0 for power losses, 500.0 for current overloads, 50.0 for voltage deviations and 1.0 
for switch operation.  Varying the weights can lead to alternative solutions being 
produced, but does not seem to have much influence on the speed of convergence.  
 
5. Test Results 
 
The GA based supply restoration and optimal load shedding algorithm has been tested 
on an example system that is part of a practical system in the UK. The system is 
shown in Figure 1. 
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Figure 1. Test System 

 
For this system, suppose the fault occurs on the line where switch S102 is located. 
Switch S102 is tripped off to isolate the fault. Since normally those switches located 
at the power sources will not be operated during the reconfiguration, restoring the 
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supply to the loads connected to the network via S63 and S85, requires only the states 
of 63 switches (from a total of 114) to be considered in the study. The chromosome is 
of length 64, composed of 63 genes denoting switches plus the ‘0’ gene.  The test 
system shown is a typical sized problem for post-fault restoration in an urban 
distribution network.  For on-line implementation a pre-processing stage is required to 
limit the dimensionality of the network model.  The model should include sufficient 
lines and substations adjacent to the fault, so that all reasonable switching options are 
possible.  On the other hand, it is desirable to limit the dimensionality so that the 
computer time required for solution is not excessive. 
 
5.1 GA for Full Supply Restoration 
 
Suppose the fault occurs at the base load level. The GA has a pool size of 50. By 
tuning the GA parameters, the optimal performance was reached for a crossover rate 
of 0.6, and mutation rate of 0.08125. After 337 iterations of evolution, the GA reaches 
its minimum objective function value 2.0429, of which 1.0429 is contributed by 
network loss while the remaining 1.0 is contributed by the single switch operation: 
switch S1 is changed from ‘open’ to ‘closed’.  This is obviously the global optimal 
solution under this condition. The resulting network topology is shown in Figure 2. 
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Figure 2.  Network Configuration after Supply Restoration at Base Load Level 
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Figure 3. GA Evolution Process for Supply Restoration at Base Load Level 
 
 
The GA evolution process is shown in Figure 3, where OBF shows the minimum 
objective function value achieved by chromosomes in the pool. From Figure 3, it can 
been seen that at the beginning of evolution, the objective function values are high 
indicating the existence of constraint violations or load shedding. However, in the 76th 
iteration, the objective function value drops sharply from 14.5095 to 8.04167. After 
that, the GA objective function values consist of only two parts: switch operation 
costs and network losses. The optimal solution is finally achieved after 3 further step 
improvements occurring at the 97th, 120th and 337th iterations, each reducing the 
switch operation cost by 2.0. It is obvious that the ‘0’ gene has moved far enough 
back in the chromosome in the 76th iteration not to prevent any load from being 
connected to the network.  
 
Although the optimal solution for this example is quite obvious, a general 
disadvantage of using a GA is that there is no simple algorithmic indication of when 
an optimal solution has been reached. The usual approach is to continue the 
evolutionary process until a threshold number of generations have been passed with 
no further improvement in objective function value. This inherent difficulty is 
illustrated in the present example, where a long period of stagnation occurs between 
generation 121 and generation 337.  For more difficult examples, such as that 
considered in the following section, a further disadvantage is that there is no 
indication of whether the final solution is indeed optimal.  In applying the GA 
approach to complex problems, it is generally expected that a near-optimal solution 
will be obtained.  However, proving optimality for any complex problem is inherently 
intractable.  
 
Using a DEC Alpha 433au Personal Workstation, it takes about 3.5 minutes of 
computer time for the GA to reach the optimal supply restoration solution. 
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5.2. GA for Optimal Load Shedding  
 
Suppose now that the system is operated in a stressed condition at 120% base load 
level. With the same GA parameters as in 5.1, the minimum objective function value 
achieved is 13.166, of which 3.26 is due to load shedding and 0.905 is for network 
loss, and 9.0 is for switch operations. The resulting network is shown in Figure 4. The 
GA evolution process is shown in Figure 5. 
 
It can be seen from Figure 5 that, in the beginning of GA evolution, the objective 
function is high due to the unreasonable network topologies generated by the (initially 
randomly positioned) ‘0’ gene. However, through evolution, the ‘0’ gene moves 
towards the end of the chromosome. Since the system is in a very stressed condition 
and cannot supply all loads without violating security constraints, one or more 
selected loads have to be shed. The optimal load shedding point is indicated by the 
position of the ‘0’ gene in the final chromosome. Its position is ‘tuned’ by the GA 
evolution to minimise the GA objective function value. The load is shed if it can only 
be connected to the network via switches located behind the ‘0’ gene in the final 
chromosome. In this case, as can be seen in Figure 4, switch S49 is tripped off to shed 
the appropriate load.  
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Figure 4.  Network Configuration after Optimal Load Shedding in Stressed Condition 
(at 120% Base Load Level) 
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Figure 5. GA Evolution Process for Optimal Load Shedding 

 
5.3 Results Analysis  
 
From the test results, it can be seen that at the base load level where full supply 
restoration can be achieved, the proposed algorithm gives an optimal re-configured 
network and supply restoration strategy. 
 
When the system is in a stressed condition, and the network can not supply all of its 
loads, the position of the ‘0’ gene and the genes following it in the GA chromosome 
determine the optimal load shedding points, so that the network can supply all other 
loads. 
  
The radiality constraint is respected by the graph-theory-based switch setting 
algorithm. The security limit constraints are unlikely to be violated due to the heavy 
penalty weightings selected for them in the objective function of the GA. It can be 
seen from the resulting objective function values that in both examples, no overload 
exists in any line, and no voltage excursion occurs at any bus.  In the case of 
violations of these security limit constraints, the GA would prefer to shed some loads 
to correct the problem, since the penalty weighting value for the unsupplied load term 
is smaller.  
 
In both cases, the optimum network configurations are achieved after about 340 
generations of evolution. It takes approximately 3.5 minutes of computer time for the 
system to read the data from database, run the GA for 340 generations and display the 
suggested supply restoration result and optimal load shedding point (if applicable) to 
the user. This level of performance would allow online application in the distribution 
control centre. 
 
It can be clearly seen that by omitting the switch operation cost term and lost load 
term in the objective function formulae, the proposed algorithm could also function as 
a network loss minimiser for distribution network operation and planning. The ‘0’ 
gene will not be required in this application.  
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6. Conclusions 
 
A GA based method is proposed to decide the supply restoration and optimal load 
shedding strategy for distribution networks. The ‘integer permutation’ encoding 
scheme is adopted in which each chromosome represents the set of controllable 
switches the final states of which the algorithm is to determine. Graph theory 
guarantees that the chromosome will be mapped to a unique and valid radial 
distribution network. A ‘0’ gene can be introduced in the chromosome to indicate the 
optimal load shedding points when demand is beyond the ability of supply. The 
algorithm has been tested successfully on a practical system.  
 
7. Acknowledgements 
 
The authors would like to acknowledge the financial support of Northern Electric 
Distribution, Yorkshire Electricity, and NORWEB Distribution. They also wish to 
thank Mr. Bob Eunson, Mr. Mark Marshall, Mr. Steve Cox and Mr. John Westwood 
of the above companies, for their technical contributions to this research.  
 
8. References 
 
1. G. Chang, J. Zrida and J. D. Birdwell, ‘Knowledge-based distribution system 

analysis and reconfiguration’, IEEE Trans. Power Systems, Vol. 5, No. 3, 1990, 
pp 744 –749.  

2. C. C. Liu, S. J. Lee and S. S. Venkata, ‘An expert system operational aid for 
restoration and loss reduction of distribution systems’, IEEE Trans. Power 
Systems, Vol. 3, No. 2, 1988, pp 619-626. 

3. T. Nagata, H. Sasaki and M. Kitagawa, ‘A method of determining target 
configurations for power system restoration using a mixed integer programming 
approach’, Electrical Engineering in Japan, Vol. 115, No. 2, 1995, pp 67-77. 

4. T. Sakaguchi and K. Matsumoto, ‘Development of a knowledge based system for 
power system restoration’, IEEE Trans. Power Apparatus and Systems, Vol. PAS-
102, No. 2, 1983, pp 320 –329. 

5. R. J. Sarfi, M. M. A. Salama and A. Y. Chikhani, ‘A Survey of the state of the art 
in distribution system reconfiguration for system loss reduction’, Electric Power 
Systems Research, Vol. 31, 1994, pp 61-70. 

6. K. Shimakura, J. Inagaki, Y. Matsunoki, M. Ito, S. Fukui and S. Hori, ‘A 
knowledge-based method for making restoration plan on bulk power system’, 
IEEE Trans. Power Systems, Vol. 7, 1992, pp 914-920. 

7. A. M. Stankovic and M. S. Calovic,  ‘Graph oriented algorithm for the steady 
state security enhancement in distribution systems’, IEEE Trans. Power Delivery, 
Vol. 4, No. 1, 1989, pp 539-544. 

8. C. Y. Teo, ‘A computer aided system to automate the restoration of electrical 
power supply’, Electric Power System Research, Vol. 24, 1992, pp 119-125. 

9. C. Y. Teo, and H. B. Gooi,  ‘Restoration of electrical power supply through an 
algorithm and knowledge based system’, Electrical Power Systems Research, Vol. 
29, 1994, pp 171-180. 

10. D. S. Popovic and R. M.Ciric, ‘A multi-objective algorithm for distribution 
networks restoration’, IEEE Trans Power Delivery, Vol. 14, No. 3, 1999, pp 1134-
1141. 



 17

11. S. Curcic, C. S. Ozveren and K. L. Lo, ‘Computer-based strategy for the 
restoration problem in electric power distribution systems’, IEE Proc.-Gener. 
Transm. Distrib., Vol. 144, No. 5, 1997, pp 389-398. 

12.  K. Nara, A. Shiose, M. Kitagawa and T. Ishihara, ‘Implementation of genetic 
algorithm for distribution systems loss minimum re-configuration’, IEEE Trans. 
Power Systems, Vol. 7, No. 3, 1992, pp 1044-1051. 

13. Y. Fukuyama, H. D. Chiang and K. N. Miu, ‘Parallel genetic algorithm for service 
restoration in electric power distribution systems’, Electrical Power and Energy 
Systems, Vol. 18, No. 2, 1996, pp 111-119 

14. M. R. Irving and C. N. Macqueen, ‘Robust algorithm for load estimation in 
distribution networks’ IEE Proc.-Gener. Transm. Distrib., Vol. 145, No. 5, 1998, 
pp 499-504 

15. D. E. Goldberg, ‘Genetic Algorithms in Search, Optimisation and Machine 
Learning’, Addison-Wesley, 1989. 

16. Z. Michalewicz, ‘Genetic Algorithms + Data Structures = Evolution Programs’, 
Springer, 1996. 

 
 


